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Abstract

If some of the trailers of the so-called n-trailer system are connected via a kingpin
hitch, the kinematic model of the system is more complicated that in the standard case.
However, something can still be said about the structural properties of the system, like
controllability. The more complicated equations can be interpreted in terms of virtual
steering wheels placed on the off-axle joints with steering angle which is a nonlinear
feedback from the original configuration state. Quite remarkably, the extra singularities
of the system have an explanation in terms of these virtual steering wheels. This is
also sufficient to assert that the general n-trailer problem can be embedded into the
corresponding multisteering n-trailer system. The multi-chained form available for
this last system can be recovered also for the general n-trailer if we replace the extra
steering inputs with the aforementioned feedback loops.

Keywords: Mobile robots, Nonholonomic Constraints, Nonlinear Systems, Pfaffian Sys-
tems, Controllability, Singularity, Embedded System, Chained form.

1 Introduction

The n-trailer system, i.e. a mobile robot pulling an arbitrary number of trailers is a typical
example of system in which the nonholonomic kinematic constraints, due to the assumption
of rolling without slipping of the wheels, play a determinant role. The configuration of the
system is given by two position coordinates and n + 1 angles and, normally, two are the
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available inputs, representing the steering and translational actuators of the pulling cart,
even though systems with more steering inputs have been studied in [Bushnell et al. 1993]
and [Tilbury et al. 1995]. The number of trailers can be increased at will: adding a trailer
simply means adding a nonholonomic constraint to the system or, equivalently, an orientation
angle to the configuration space.

The usual model for the pulling cart and for the trailers consists of a single axle with two
wheels that are assumed parallel, neglecting, in the steering pair, the difference due to the fact
that rotations must occur around a single center of rotation, see [Alexander and Maddox 1988].
Each axle is hitched to the preceding trailer by means of a rigid bar. In the case ex-
tensively treated in the literature, starting from Laumond [Laumond 1990], every axle is
hitched exactly in the middle of the axle in front of it, i.e. only axle-to-axle connection are
present. We will call this the standard n-trailer problem. A rich literature has grown for the
standard n-trailer problem dealing with controllability [Laumond 1990], open loop motion
generation [Murray and Sastry 1993], [Rouchon et al. 1993], closed loop control strategies
[Bloch et al. 1992], [Serdalen 1993b] and many others (see [Kolmanovsky and McClamroch 1995]
for a survey) for different control problems like point stabilization, point tracking or path
following. The peculiarity of this kind of system is that its nonholonomic structure, which
‘permits’ controllability even if the system is underactuated, is directly visible in the model
formulation as a collection of nonholonomic constraints on the velocity. In geometric terms,
the n-trailer can be seen as an higher order contact manifold whose defining functions are
the set of non-integrable one forms corresponding to the velocity constraints on the wheels.
In particular, it was shown in [Sgrdalen 1993a] and [Tilbury et al. 1995] that the resulting
system can be converted into a particular canonical form, called chained form for which
the handling of the above mentioned problems result simplified. The chained form was
first introduced by [Murray and Sastry 1993] as a particular class of equations for drift-
less systems. Although nonlinear, it has an underlying linear structure, reminiscent of the
Brunovsky normal form. Since it was introduced, the chained form has been extensively used
to treat all of the relevant control problems of the nonholonomic systems, see [Samson 1995],
[Serdalen and Egeland 1995] for instance. In [Tilbury et al. 1995], a connection was made
with its dual, the so-called Goursat normal form in the language of the exterior differen-
tial systems. The 2-input chained form was extended to multi chained form (intended as
multi-input single generator chained form) in [Tilbury et al. 1995], to take into account more
complex systems with more that one steering input. An application of 3-input chained form
was the fire-truck example presented in [Bushnell et al. 1993].

In many practical situations, the standard n-trailer is not a realistic configuration: in
fact, to improve maneuverability or due to the cumbersome shape of the trailer body, it
happens that a trailer can be attached not exactly in the middle of the preceding axle but
at a positive distance from it. When one or more trailers present off-hitching, we will name
the system general n-trailer. Examples of such systems are the truck and trailers that we
normally see on our highways or a real car pulling a trailer, or special articulated vehicles,
like the so-called LHD (Load-Haul-Dump) a two-axle truck used for mining applications,
[Altafini 1999].

Including kingpin hitches into the kinematics of the n-trailer results into an extra number
of terms that need to be added to the basic dynamic equations. This suggests that some of the



techniques for the standard n-trailer can be generalized to our system. In particular, results
on controllability obtained by [Laumond 1990, Murray and Sastry 1993] can be extended
quite directly. We will check local controllability in two different ways: first via the rank of
the control Lie algebra as is normally done; then in the dual way, calculating the derivative
flag of the Pfaffian system which is obtained from the dual representation of the general
n-trailer. The comparison of the two procedures is quite interesting: as is often the case, the
local maximal nonintegrability condition is much easier to check on the dual system.

The above mentioned extra terms in the kinematics corresponds to irregularities that
‘break the chain’ that constitute the ‘backbone’ of the n-trailer system so that the global 2-
input chained form is lost. We will show, however, that this breaking points (the off-hitching
joints) can be substituted by ‘virtual’ passive steering wheels whose steering angle is uniquely
determined by the configuration state by means of nonlinear feedback. Each virtual steering
wheel corresponds to an internal feedback loop from the configuration state of the system.
Opening all these feedback loops, we have a multisteering n-trailer system for which a multi-
input chained form exists [Tilbury et al. 1995]. All the chains admit the same generator
and this generator is the ‘classical’ one used for the 2-input chained form for the standard
n-trailer. Since the general n trailer has only two degrees of freedom (i.e. two inputs), the
feedback of the virtual steering wheels will take the place of the exogenous input used in
[Tilbury et al. 1995] and will link two consecutive chains. This is equivalent to consider
only a particular submanifold of the multisteering n-trailer system and it corresponds to
think of the general n-trailer as an embedding into the multisteering n-trailer. Moreover,
our chained form results simplified with respect to [Tilbury et al. 1995] in the sense that no
dynamic extension of the system is needed.

The more complex nature of the system reflects in an higher number of singularities when
compared to the standard case, see [Jean 1996]. We give a physical interpretation of these
extra singularities in terms of the steering angles of the above mentioned virtual wheels.

Whenever possible, we carry out explicit calculations for the cartesian frame we choose.
In fact, one of the main advantages of the n-trailer configuration is that it has a state space
description which is simple enough to allow writing down and manipulate exact formulas
in the original coordinate setting for both the primal and the dual representations of the
system, even for a generic number of trailers. The resulting formulae we get are somewhat
lengthy, but we do not think that this is obscuring their geometric properties.

2 Mathematical preliminaries

The material in the present Section is largely taken from standard textbooks in Nonlinear
Control like [Isirori 1995, Nijmeijer and van der Shaft 1990] and from [Abraham et al. 1983,
Bryant et al. 1991] for the basic facts about exterior systems and differential forms. A more
thorough presentation of this material in the same context of Mobile Robotics can also be

found in [Pappas et al. 1998, Tilbury et al. 1995].



2.1 Underactuated drift-free nonlinear systems

Definition 1 An underactuated drift-free control-affine nonlinear control system is a collec-
tion of r differential equations in the variables v and w;, 1 =1,...r

&= Zgi(:z;)ui (1)

where x € D C R? with ¢ > r and g; are input vector fields g; : D — R9. We assume that
D contains the point xo of RY.

The expression (1) can be intended as a representation in a local cover (D, © = (x1,...2,))
of a point p leaving on an abstract manifold M. The tangent space at p € M is indicated
with T, M and its expression in the local coordinate chart = as T, M. The tangent space
T, M has the same dimension of the manifold M.

Definition 2 The distribution A associated with the control system (1) is a collection of
independent vector fields g;. On each point x € D the distribution A gives a vector subspace
of T,M:

A(e) = span {gu(2), ...go(2)} ¢ €D 2)

We assume g; to be C°°(D) and x to be a regular point of A i.e. dimA(x) =r Va € D.

For the particular kind of system studied in this paper, the dual point of view of the
distribution is particularly interesting because, as we will show below, it corresponds to
highlight the nonholonomic constraints of the system. If we call )M (1M in coordinates)
the cotangent space, dual to T, M, then we have:

Definition 3 A codistribution [ associated with the control system (1) is a collection of
s = q — r smooth and linearly independent (over the ring of smooth functions) covector fields
o’ that annihilate A on each point © € D:

I(z) = Spaln{ozl(x),...,as(x)}ljzl,...,s
= { (@) € T;M sit. <o'(z), gi(x) >=0 Vi=1,...,s, i=1,....r} (3)

We assume to work in a domain D in which the one-forms a’(x) are C* sections of the
exterior algebra over TM and the codistribution [ is a smooth assignment (and therefore,
at each point = , a vector subspace of T*M) both with respect to the wedge product, i.e. the
alternating (normalized) tensor product. What (3) says is that, in coordinates, the one-forms
a’(x) can be written as a s x r matrix such that the g;(x) constitute a basis for the right null
space of this matrix. Then, if we want to be able to use the machinery of exterior differential
systems, we have to endow the codistribution [ with some extra structure in order to make
sure that the solution of our collection of one-forms is indeed an integrable distribution. This
property correspond to the regularity assumption of a point in the distribution case. Such a
special case of codistribution is called a Pfaffian system.

Definition 4 The codistribution formed by the smooth and independent one-forms I =
{a',...,a®} is said a Plaffian system if it generates an ideal I which is closed under exterior
differentiation.



The ideal generated by [ is
I={a'N0 st. o' €I, 6€QM)}

where Q(M) is the module of smooth exterior differential forms of all orders on M.

2.2 Local controllability for underactuated systems

A fundamental (and well-studied) issue to deal with for underactuated systems is control-
lability, see [Nijmeijer and van der Shaft 1990] or, for example, the classical survey paper
[Hermann and Krener 1977]. In what follows we are interested only in the local properties
around a regular point .

Definition 5 The system (1) is said small-time locally controllable at xo € D if we can
reach nearby points in arbitrarily small amounts of time remaining in D.

It is well-known that the notion of local controllability (which coincides with local strong
accessibility for drift-free systems) can be checked in geometric terms by considering the
span of the commutators of the vector fields that generate the system. This idea is strictly
connected with that of involutive distribution via the Frobenius theorem that gives necessary
and sufficient condition for (local) complete integrability of a distribution. This is essentially
equivalent to say that the annihilator space of A has to be spanned by exact differentials,
at least locally.

The fundamental tool to test local controllability is the Chow theorem which asserts that
a system is locally controllable if and only if it is maximally nonintegrable.

The vector fields of A, together with their commutators, form an algebra, called the
control Lie algebra. In order to construct it, one has to build a filtration, patching together
the vector fields of A and all the new independent commutators produced at each level of

Lie bracketing Ag = A, A; = span {A;_1 + [A;_1, A;_1]}, such that
Ag CAL C...C Ay (4)

for some finite k. Different rules for building the above filtration are given in [Laumond 1993a,
Laumond 1993b, Murray and Sastry 1993]. In a regular point, the dimension of the filtra-
tion (called the growth vector) stabilizes in correspondence of the control Lie algebra. We
have local controllability when the rank of the control Lie algebra is equal to the dimension
of the tangent space.
A dual characterization can be carried out for the Pfaffian system corresponding to (1).
In particular, dually to the filtration (4), we can construct a descending chains of Pfaffian
systems called derivative flag
195105 o % (5)
where [(©) = [ and [0+ = {o/ =c [V s.t. do’ = 0 mod [(j)} is the derived Pfaffian system
of IV, The expression da’ = 0 mod IV is called a congruence and means that the exterior

derivative of o' is a linear combination of the one-forms of IV (over the ideal I(j)), ie.
dot Ao AL Na% =0 Yab e [U),



Similarly to the filtration, also the derivative flag stops at a certain k for regular points.
The maximally nonholonomy condition can therefore be restated in terms of the derivative
flag, saying that local controllability is equivalent to the existence of an integer k at which
the derivative flag becomes empty: [*) = 0.

To have controllability, the bottom system of the derivative flag, which is always inte-
grable by the Frobenius theorem, has to be empty. This implies that there is no integrable
subsystem of the original system, i.e. the solution trajectories of I are not constraints to lie
on a leave of a (nontrivial) foliation of M.

2.3 Singularities

Regularity of x¢ means that the distribution A does not loose rank in the neighborhood D
of xg. A similar condition is of interest for the filtration (4). If the dimension of the entire
sequence (4) is constant in D, then we call ¢ regular with respect to the filtration, in order
to distinguish from the regularity with respect to A only.

Definition 6 A point xq which is not regular with respect to the filtration is said singular.

All the singular points of the system form the so-called singular locus of the system. The
knowledge of the singular locus is important when checking controllability: in fact in corre-
spondence of such a zero dimensional submanifold, the number of Lie bracketing operations
needed to span the whole tangent space is different from the points which are regular with
respect to the filtration. The complexity of such a check (which is proportional to the
complexity of a steering algorithm for the system) obviously increases in the singular points.

2.4 Embedding map

The next concept we need is that of embedding map of a manifold.

Definition 7 Given two smooth manifolds My and My with dim(My) = ¢1 and dim(My) =
g2, ¢1 < qo, the C™ map f : My — My s called a local immersion of x € M, if there exists
a neighborhood D € My of x¢ such that rankf(z) = ¢ Vo € D.

So a map between manifolds is an immersion if it has the same rank as the domain. Obviously
the rank is independent of the local chart used.

When an immersion is ‘well-behaved’ it is called an embedding. For well-behaved we
mean that it has to be an isomorphism onto its image with respect to the topology induced
from the corresponding R? by the local chart used [Spivak 1979].

Definition 8 The C* map f : My — M, is an embedding if it is an immersion and it is
an homomorphism onto its image.

Moreover, we have the following definition:

Definition 9 Suppose My C My. M, is a submanifold of My if the identity map id : My — My
is embedding.



3 Kinematic model for the general n-trailer

Suppose we have a generalized n-trailer system with m (m < n) of the trailers not directly
attached at the center of the previous axle but at a positive distance M; from this point.
Assume that each body is composed of one single axle, this being equivalent to the case
where 2-axis bodies are present, modulo a state feedback (see [Tilbury et al. 1995]). The

On

Figure 1: The general n-trailer system.

assumption of rolling without slipping of the wheels can be formulated in terms of nonholo-
nomic kinematic constraints deciding the instantaneous direction of the velocity vector of
each axle. Let 6; be the orientation angle of the 1 — th axle and v; the translational velocity
of the midpoint of the i-th axle, 7 € {0,1,...,n}. If x; and y; are the corresponding cartesian
coordinates, then the one-forms can be expressed as:

o' = dx;sin 0; — dy; cosf; =0 (6)

If the L; is the distance between the i-th axle and the hitching point of the same trailer
and M; is the distance between the i-th axle and the kingpin hitching point of the following
trailer, we can use the (holonomic) relations between two consecutive nodes i — th and

i+ 1 —th (see Fig. 1)

Tiy1 = x; — Liyq cos b1 — M; cos b,
Yi+1 = Yi — Li-l—l sin (92'_|_1 — MZ sin (92

(7)

and the one-forms (6) to obtain a recursive equation for the orientation angle 6,1 as a
function of #; and v;, 1 € {1,...,n — 1} :

U; sin(@i — (92'+1) MZ COS(@Z' — (92'+1)(92' (8)
Li-l—l Li-l—l

Oip1 =

Also the calculation of the velocity of the axle ¢ + 1 is slightly more complicated than in the
standard n-trailer problem:

Vi41 = U5 COS(@Z' — (92'+1) + MZ sin(@i — (92'+1)(92' (9)

This accounts for the intuitive phenomenon that, in presence of off-hitching, a trailer can have
a (small) positive velocity and the following trailer a negative one, when the angle between
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the two trailers 6; — 6,41 is changing with high rate. Obviously, both eq. (8) and eq. (9)
reduce to the well-known equations for the standard n-trailer problem when no off-hitching
is present, namely when M; = 0.

The n-trailer system has two physical inputs, corresponding to translational and steering

actions of the car pulling the trailers. Calling /3, 2 o — 01, at the kinematic level we can
consider these two inputs to be the steering speed wy = 31 = 0y — 6; and the translational
speed vy of the driving cart. Alternatively as steering input we can consider the following:

Vo Siﬂ 61 —|— L161
Ll + MO COS 61

w0:00:

To complete the state space model of the general n-trailer system, we need the cartesian
coordinates of one of the middle points of the axles: for the purposes of proving controllability
it is convenient to choose (xg, yo) of the driving cart,

To = vgcosby (10)

yo = vosin(% (11)

whereas it has been shown in [Sgrdalen 1993a] for the standard n-trailer problem, that
choosing the ones of the last trailer is particularly significant when the task is to transform the
system into chained form, because it is connected to differential flatness [Fliess et al. 1995].

T, = v,cosl, (12)
Y, = v,sind, (13)

In fact, the coordinates x, and y, correspond to the so-called flat outputs for the standard
n-trailer. In both cases, an ad hoc selection of the cartesian coordinates greatly simplifies
the calculations.

The relation between vy and v,, will be derived in Section 9.

4 The virtual steering wheels

The basic idea is that the n-trailer system with m off-hitching joints can be converted into
an n + m-trailer system with m + 1 steering axles, adding a steerable wheel at each of the
aforementioned joints not directly hitched on the preceding axle. These m virtual steering
wheels are passive, in the sense that their steering angles are (uniquely) determined by the
configuration and by the dynamic equations of the system. This is equivalent to say that
their inputs are obtained by means of feedback from the configuration of the system and
only the driving unit has exogenous input.

First we prove that a passive steering wheel is indeed admissible by the system and then,
in Section 6, we show that these virtual steering wheels provide physical insight into the
extra singularities of the system due to the kingpin hitching.

Proposition 1 Consider the 2-trailer off-hitching connection between the trailers ¢ and i41.
This subsystem is equivalent to a standard 3-trailer system with a steering wheel in the middle



a8y,

Figure 2: The virtual steering wheel.

(Fig. 2). If 0., is the orientation angle of the steering wheel and its steering angle is defined

as v; = 0., — 041, then it must be:

M; .
vi = 0; — 0,41 + arctan (— (92> (14)
Uy

Proof. Consider the sketch in Fig. 2. If such a virtual wheel exist, then, due to the rigidity
of the connection between M; and L;, the dynamic equation for the i-th orientation angle
f;, obtained in general from eq. (8), must also be expressible as a function of the angle «;
(representing the steering angle of the virtual wheel with respect to the preceding trailer):

. R

0, = ———tan a;

M;

where the minus sign reflects the fact that the wheel is following and not preceding the axle.
At the same time, the steering angle of the virtual wheel with respect to the following trailer
1+ 1, v;, must be such that

(9‘2'_|_1 = Zi-l—l tan Yi (15)

1+1
Therefore, a physical solution exists (i.e. the wheel is admissible) iff

Vi =0 — 011 + o
Substituting into eq. (8), we get:

viprtany;, v tan(6; — 0,41) M;v; tan oy

Livi Litq M; Lty cos(6; —6;41)

using eq. (9):

v; cos(6; — 0i11) + M;sin(0; — 0;11) (— ]\1]42 tan ozi>}
(tan~y; —tan(0; — 0,41)) =
le.

_tan(0; — 0;41) + tan o,
1 —tan(f; — ;) tan oy

= tan(@i — (92'_|_1 + ozi)



5 Comparison between standard and general n-trailer

systems
In what follows it is convenient to use the following notation: we call ny,... . n,, n;<njyq,
n,, <n the indices of the axles having nonnull off-hitching (M, # 0). We can group together
the axles between two consecutive steering wheels: {0,1,...,n1}, ..., {n;or +1,...,n; — 1,n,},

ooy {ngn +1,...,n—1,n}. Each of the groups of axles, together with the steering wheel
in front of it, will constitute a steering train. In case of two consecutive axles having off-
hitching, then a steering train is reduced to a single axle. We call this a degenerate steering
train. With this notation we can rewrite the dynamic equations of the orientation angles of
the general n-trailer problem as:

9n]+1 _ U tan[f@nj — 0, 41) . Mnjénj (16)
nj 41 ny41€08(0n — 0, 41)
Vp,41 = U, c0s(0n, — 0, 41) + M, sin(0,, — an+1)9nj (17)
je{l,...,m}
. Vp,—i tan(0n,_i_1 — 05, ;)
O, = - (18)
V=i = Upymic1 €OS(0n, i1 — 0, ;) (19)

with je{l,...,m+1}, 1 €{0,1,...,n; —nj_1 —2} and nyu4 =n.

We assume, in what follows, that the steering trains are not degenerate.

In order to highlight the similarities of the dynamic eq. (16)-(19) with those of the
standard n-trailer it is convenient to rewrite them in terms of the relative orientation angles
i = 01 —0;, 1 € {1,...,n}, expressing all v; as functions of vy and using the cartesian
coordinates (xg, yo). The system becomes:

To = wvgcos by (20)
yo = VYo sin 00 (21)
90 = Wy (22)
. Vg sin
B = _07[31 T wo (23)
Ly
ﬁn]-l—l = g (AHCOS ﬁk> H (1 T Lnk tan ﬁnk tan ﬁnk.H)
=1 k=1 "k

tan 3, sin 3, .11 M,
. J J I . - 24
( Lnj Ln]_l_l -I' Lnj Lnj-l_l anﬁ 3 Cos ﬁ s+1 ( )

ny—i—1 j—1
. Mn
571]—2' = v0< Hcos ﬁk> H (1 + 7 k tan ﬁnk tan ﬁnm—l)

k=1 k=1 Tk
tan ﬁn —t—1 sin ﬁn —1
: Tl ; 25
( Ln]—i—l Ln]—i ) ( )

10



Jged{l,...om}, 1€ {0,1,...,n; —nj_q —2}.
Notice that equations (20)-(25) are everywhere well defined.

Clearly, each of the components due to the kingpin hitching enters linearly into the system
as an extra term added to the basic dynamic equations of the standard n-trailer, which are
reobtained choosing M, = 0:

To = vgcosly (26)
yo = Uy sin 00 (27)
90 = Wo (28)
. Vg Sin
B = —OTQI + wo (29)
1
: i tan 3;  sin B4
Pt = v (g o ﬁk) ( L Lipy ) (30)

e {l,...,n—1}

In the rest of the paper we will pass indifferently form the coordinate system in the
absolute angles 6;, 1 = 1,...,n, to the other one in the relative orientation angles 3;, 1 =
1,...,n, according to convenience.

The Pfaffian system associated with (16)-(19) is simply the collection of one-forms (6)
plus the equations between pairs of cartesian coordinates of two adjacent nodes (7). So the
irregularities enter only into the holonomic relations linking two consecutive one-forms via a
kingpin hitch and propagate to their exterior derivatives:

dv,, = dv,, 41— Lnq1sinb,,11d0, 1 — M, sinf, do,,
dyn;, = dyn;41+ Ly, 41c080,,41d0,, 11 + M, cos0, db,,

J € {l,...,m}. When off-hitching is missing instead we have:

dxnj —i—1 = dxnj —i Lnj —¢Sin enj —idenj —i

dynj —i—1 = dynj —i + Lnj—i CcO8s enj—idenj —1i

Jged{l,...om+1}, ¢ € {0,1,...,n; —nj—; — 2}. In order to recover the original configu-
ration space dimension, we have to substitute into (6) the cartesian coordinates as functions
of one single axle. In a proper domain of definition (see below) we can rewrite the one-forms
(6) in terms of congruences:

dy; = tan0; dz; modo' i € {0,1,...,n} (31)

meaning with this expression that the congruence is satisfied up to an element of the ideal
generated by o' i.e. dy; = tanf;dz; + v A o for some v € Q(M) also satisfies it. In
[Pappas et al. 1998] it is shown how to use the congruence to obtain a relation between
the exterior derivatives of the cartesian coordinates of two adjacent standard trailers. This
is basically what we need in order to eliminate the holonomic constraints on the Pfaffian
system. With the same notation convention used above, In the standard case, see Fig. 3 (a),

11



enj
) ) en +1
(a) standard hitching: (b) off-axle hitching:
My, —ico=My,_i—1 = Mp;—1 =0, My, #0

0

Figure 3: The two different kinds of hitching.

at the node n; — ¢ the congruence between the exterior derivatives of the orientation angle
0,,,—; and that of the corresponding cartesian coordinate x,,_; is modulo the two one-forms
a™ ™! and o™, We get in the case M,, i 2=M, i 1=0:

tan <0nj—i—1 - en]—i>

n;—i—1 —1
j— \ Oénj 7 (32)
Ly, _icos0,,_;

danj—i =

dx,,_; mod a

which gives the recursive relation
dr,, i1 = (1 — tan 0,,_; tan ((971]_2'_1 — GnJ_Z')) dx,,—; mod oz”ﬂ_i_l, Qi

When, instead, a joint with kingpin hitch is involved, Fig. 3 (b), the formulae for the con-
gruences gets more complicated:

My,
tan (9% — 071]+1> — Lnj tan (9%—1 — an> X
dfp, 41 = i J dr,, 41 mod ™™, o™, «a
Ly, 410080, 41 <1 + L:J tan (9%—1 — an> tan (9% - Qn]+1>>

J

nj+1

(33)
which says that the congruence following a kingpin hitch involves three (instead of two)
consecutive one-forms. This also appears in the recursive calculation of the dux;:

I —tan @, 4, tan (9% — 071]+1> + ? tan (9%—1 — an> (tan (9% — 071]+1> — tan 071]+1>
dr,, = i 7 dp, 41

<1 + ]\;:J tan an tan <0n] — 071]+1>> <1 + Lnj tan (9%—1 — an> tan <0n] — 071]+1>>

J

mod o™t o™ ™! (34)

What these complicated formulae tell us, as well as their vector field counterpart (24)-(25),
is the (intuitively clear) fact that the presence of off-hitching implies that a motion with
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nonnull steering propagates more ‘in depth’ in the chain of trailers than in the standard
configuration, i.e. the change of the orientation angle in the trailer that follows the off-axle
hitch is influenced not only by the orientation angle of the trailer in front of it as in the
standard case, but also by the one of second trailer ahead. When the system has degenerate
steering trains (i.e. it has two or more consecutive axles with kingpin hitching), the number of
one-forms involved into a relation like (34) is higher than three. We will see in Section 7 that
this argument, in particular its formulation on the dual system, can help in understanding
the local controllability property of the general n-trailer.

Putting together all equations for adjacent axles we get that the following proposition
still holds true also for the general n-trailer.

Proposition 2 ( [Pappas et al. 1998], Lemma 42 ) The exterior derivatives of any of the x
variables are congruent modulo the Pfaffian system I:

dv; = fp; dx; mod I.

All the above reasoning has value only locally, in a (usually large enough) interval con-
taining the origin. The set of points in which the model formulation is undefined is larger
in the general n-trailer that in the standard n-trailer. Its physical meaning is explained in
next Section.

6 Singular locus

The index at which the filtration stops at a point xg is called the degree of nonholonomy
of the system at xzg. When x( satisfies the Lie algebra rank condition then the system is
said mazimally nonholonomic at xq. Singular points for the standard n-trailer system have
the physical meaning of orthogonal angles between consecutive trailers and they lead to a
different degree of nonholonomy, see [Jean 1996] for a complete discussion.

For the general n-trailer, proposition 1 affirms that a virtual steering wheel can be placed
on the kingpin hitching nodes and gives a value for its steering angle. Furthermore, from
eq. (15) we see that the tangent of the virtual steering angle enters into the dynamic equation
of the heading of the following trailer. Therefore one can ask whether the ‘virtual’ singularity
introduced by tanv; must be considered in the analysis of the controllability of the model
or less. The corresponding singular points can be rewritten using the formula:

M, .
a; = arctan —U—an =7 — Bn,41

j

as

. vy, vy,
0, = ——=—tan(vy; — Bu,4+1) = — tan G,
J Mn] J Lnj J
or, after some manipulations,
tan 3, 41 — L:J tan 3,
tany; = - (35)

My,
L + 2 tan 3,41 tan 3,
3
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The singular point
v, — g mod 7

is then equivalent to

nj

I+

tan 3, 41 tan 3, — 0. (36)
ny

With eq. (36), the question posed above can now easily be answered looking at eq. (24)-

(25): the ‘virtual’ singularities are indeed singular points of the control Lie algebra since

<1 + 5% tan 3,11 tan ﬁnj> = 0 implies that the vector field associated with the input vg
"

has the last n —n; — 1 components that are null. From eq. (24)-(25), also the cos 3 have the
same effect of annulling the last n — k terms of the input vector field associated to vg. The
consequence is that the Lie bracket cannot generate a full rank distribution with the same

growth vector as in the nearby points. Similarly to the standard case, the proof should pass
through the computation of the filtration (4). However, an informal argument can be given
by looking at the two vector fields in (23)-(25): the vector field associated with the input wy
has only the first component different from zero and it is a constant, while the vector field
relative to vy has a triangular structure. Therefore, whenever there are null components due

Mn
to cos 3, or to <1—|— 7
g

last extra singularities, which are not present in the standard n-trailer system, have then the

tan 3, 41 tan ﬁnj> all the remaining Lie brackets will be zero. These

‘nice’ physical interpretation of one of the virtual wheels being orthogonal to the velocity
vector of the following trailer.
To summarize: in the standard n-trailer we have that the singular locus is given by (see

[Jean 1996])
Ssz{ﬁizngdﬂ'}; i€ {l,....,n}

whereas, in the general n-trailer, it is larger:
s s
ng{@:gmodw}U{’yj:gmodw} (37)

i€ {l,....,n}, 5 € {l,...,m}.

Like Ss, S is a set of measure zero in the configuration space of the system.

For the standard n-trailer there exist techniques that allow to calculate the exact value
of the degree of nonholonomy in the singular locus [Jean 1996]. Also for the general n-trailer
it should be possible to obtain a similar procedure, although the basis of vector fields at the
singular points might result even more complicated that the one proposed in [Jean 1996].

Singular locus and domain of definition The singularity analysis mentioned above is
not invariant to the selection of coordinates for the system. In particular, it can be noticed
that the singular locus is related to the domain of definition of the kinematic model when
we change the velocity input by means of a (locally) invertible transformation.

In our case, if we assume to take as longitudinal input v,, instead of vy, then the velocities
of all the other trailers can be calculated consequently. For a generic axle n — i-th on the
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(a) standard n-trailer (b) general n-trailer

Figure 4: Singular locus and connected component containing the origin in which the system
is regular with respect to the filtration (grey areas) of the standard and general n-trailers.

last steering train we get the usual formula:

vy,
nl cos(0; — 0141)

l=n—1

Up—i =

whereas for the last trailer of the second-to-last steering train we have, if the m-th steering
train is not degenerate,

Un

Up,, =

" <1 + % tan(0,,,-1 — 0n,,) tan(0,,,, — Qnm+1)> H?:_nlm cos() — 0111)

The case of degenerate steering trains leads to a different (more complicated) expression,
according to the number of consecutive degenerate trains. For a generic axle n; —i (i + 1-th
rearmost trailer of the j-th steering train) we have:

Un

HZL:]’ <1 + ]1\34:: tan(enk—l o enk) tan(@nk - 0nk+1)> H?:_nl]—z COS(@[ o 01+1)

(38)

Up.—3 =
nj—1

and for the pulling cart:

Un

HZL:I <1 + ]1\14:: tan(enk—l - enk) tan(@nk - 0nk+1)> H7;01 COS(@[ - 01+1)

— MO tan(@o—el)wo

Vo

(39)

For sake of simplicity, we assume that v, can be expressed as a homogeneous linear function
of of vg. This is equivalent to say that we do not want off-hitching on the leading car
So S¢ is now the set of points in which the equations (20)-(25) of the system, rewritten

as functions of v, are not defined. We would like to remark that this observation is true
also for the standard n-trailer, as can be easily deducted rewriting the equations (26)-(30) as
functions of v, (with all M; = 0). What is interesting to notice is that in both cases the region
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inside the singular locus, depicted in Fig. 4, corresponds to the domain of definition (again
connected component containing the origin of the domain of definition) of the formulation
that takes v, as velocity input.

7 Controllability of the general n-trailer

One of the major features of the nonholonomic wheeled systems is that they constitute a
class of systems for which the analysis on the Jacobian linearization often fails to give the
right result, which can be instead obtained using nonlinear techniques. This is the case for
the controllability property: the standard n-trailer is not linearly controllable (it is a drift-
free system and it is underactuated) but it was shown to be controllable by Laumond (see
for example [Laumond 1990]) using the methods described in Section 2. For this system, the
main problem is to verify the rank condition for a generic value of n, which means the need
of having an iterative procedure like the one proposed by Laumond [Laumond 1993b], and
to cope with singularities. Out of the singularity locus it is possible to state a similar local
property for the general n-trailer configuration.

Theorem 1 The general n-trailer system (20)-(25) is locally controllable out of the singular
locus Sq.

Proof. In our point of view it is interesting to see both the ways of checking local
controllability given by the two dual versions of the Chow theorem reported in Section 2, via
the two practical iterative tests illustrated in the same Section. Therefore we show below
both proofs in order to be able to make a comparison.

Version 1: vector field formulation.

Since the rigorous mathematical formulation requires a lot of bookkeeping without adding
anything significant to the discussion, we provide only a somewhat informal argument.

Basically the proof is a direct consequence of the bilinearity of the Lie bracket operation:

(X7 4+ Xo, V] =[Xq, Y]+ [X,, V]

In fact, from eq. (20)-(25) we have that the vector fields that form the distribution for
the general n-trailer Ag = span {g1., g2} can be written as the sum of the corresponding
G1., G2 of the standard n-trailer plus an extra component on the vector field associated with
the tangential speed input vy:

Je = Gis T 91y
924 = 9G2g

The first n; + 3 components of ¢;,, are equal to 0. If we call:

A Mn]

p; = I tanﬁn] tanﬁnj-l-l J € {17"'7m}

j
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then the generic n; 4+ 1 4 3 element of the vector ¢, is:

ny—i—1 7—1 N
t N —i— n,;—1
gi[nj—i+3] = ( H cosﬁk) Z Z (pz(1) L -pz(m) ( azlﬁ_]'_l I Slzﬁj, )

k=1 k=1 \l(k)eC(k,j-1)

where C'(k,j — 1) is the set of possible combinations of kK numbers in the first j — 1 integers.
The component n; + 4, representing the equation of the axle immediately after the kingpin
hitching, has a slightly different expression:

Mn] tanﬁnj cos ﬁn]+1

Gign; +4] = <HZJ:1 cos ﬁk) L Ln,+1

n j—1 tan On, sin By 41 My tan fn . cos B 41
+ <Hk]:1 cos ﬁk> k=1 <El(k)ec‘(k) <pl(1) ol pl(k))) < Ln, L — Lnjil + . Ln]LJnJ+1 .

Now, we can use the result of Laumond for the standard n-trailer. In [Laumond 1993b] a
family of vector fields is proposed that generates the control Lie algebra for the standard
n-trailer. The family is composed of n 43 vector fields for any value of n. Out of the singular
locus Sg, the result still holds also for our Ag in the sense that the vector fields of the family
remain independent as in the standard case. The rank condition being satisfied, the system is

locally controllable in any regular point. In the case of [Laumond 1993b], the controllability
property was verified everywhere. Here, due to the more complicated formulae, it is not easy
to understand how to proceed at the singular points.
Version 2: derivative flag analysis.

We saw that the system is not controllable if the ideal generated by the Pfaffian system or
by a nonempty subset of it satisfies the Frobenius theorem. So we use the derivative flag
to calculate the largest integrable subsystem of the codistribution /. In order to compute
the derivative flag 1), we need to calculate the exterior derivative of the constraints and to
determine the set of one-forms that each of those derivatives requires in order to be congruent

to 0. When calculating the exterior derivative of one of the constraints o*, 7 € {0,1,...,n},
we obtain: i A d
do' = ——— mod o'
cos 8;

where we have used the fact that the two-form d?z; is equal to 0 by definition of exterior
derivative. If we now substitute df; with the corresponding expressions (32) or (33) according
to whether the axle is connected without or with kingpin hitch to the trailer in front of it,
then we obtain congruences to 0 in both cases, but modulo a different set of constraints:

da" =" =0 mod o™ o™~ g {l,....om+1}, i € {0,1,...,n; —n;_; — 2}
for the standard connection, and
da™*t =0 mod a™™!

aﬂ]? anj+17 .] E {17"'7m}

Y

for the off-axle hitches. So in the first case the exterior derivative is a linear combination of
two one-forms (via coefficient that are forms in Q(M) and wedge product) whereas in the
second case the linear combination has to be done over three consecutive one-forms. This
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spoils the regularity of the derivative flag in the sense that any time you hit a kingpin hitch
the next derived Pfaffian system will loose two elements instead of one as in the standard
case. The derivative flag goes as follows:

100 = { a® o' a* ... am7t am omtt gmt? 0 oa" )

7 = { ab o .. oamTh ogm gmtt o gmtr 0o}

72 = { o ..oamTtogm gmtl ogmt2 o ogn
[(n1—1) — { Oénl_l a™ o™ +1 a™ +2 an }

[(n1) _ { a™ o™ +1 a™ +2 an } (40)
J(n1+1) { a™t? oot}
[=m) = a” }

[(n—m-l—l) — { 0 }

So the derivative flag ends (i.e. becomes empty) quicker than in the standard case (see
[Pappas et al. 1998]). Therefore, by the Chow theorem for Pfaffian systems the system is
locally controllable. [

Obviously, the verification of controllability in a global sense requires more effort and a
technique like the one proposed by [Jean 1996] should be exploited, in order to deal with
singularity analysis.

8 The general n-trailer as an embedding

In Section 4, we showed that a passive steering wheel is indeed admissible by the system in
any of the off-axle joints. With the m virtual steering wheels, the system is ‘similar’ (in a
sense to be defined) to a standard m + n- trailer system with m + 1 steering inputs with the
peculiarity that m of the m + 1 steering inputs are not controls because they are fixed by the
feedback law (14). In fact, a fundamental property of a control is that it is a free parameter,
independent of the configuration state. The m virtual angles can be interpreted as feedback
loops where the feedback law is not chosen by the user but uniquely determined by the
geometry of the problem. If we open those m loops, we get a true n 4+ m-trailer system with
m+ 1 steering control inputs. Such a system lives on a manifold Mj; of dimension n+2m+5
characterized by n+m+ 3 states (2 cartesian coordinates, the usual n+ 1 orientation angles
of the nonsteerable trailers plus other m orientation angles for the steerable carts, called
6., in Fig. 2) and m + 2 inputs (a longitudinal velocity and m + 1 steering inputs), see
[Tilbury et al. 1995] for the details. If we now close the m loops for the extra steering
wheels according to the state feedback (14), we reobtain the general n-trailer (20)-(25) that
can be considered as evolving on a manifold Mg of dimension n + 5 ( n + 3 states plus
2 inputs). So the virtual loops locally reduce the dimension of the manifold of 2m as the
steering feedback channels are used to ‘annihilate’ the states corresponding to the angles of
the steerable virtual carts with the effect of rigidly relate the 6., to the preceding steering
angles 0, (0, = 0, after closing the loop). The following proposition states that applying
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the feedback law (14) to the multisteering n-trailer corresponds to embedding the general
n-trailer into the multisteering structure.

Proposition 3 The general n-trailer (20)-(25) is an embedding of the multisteering n-trailer
via the virtual feedback law (14).

Proof. As seen above, the general n-trailer is evolving on the manifold Mg of dimension
n + 5 and the multisteering n-trailer on Mp; of dimension n + 5 + 2m. Around the origin
we are using a minimal representation for both systems i.e. locally the two manifolds are
diffeomorphic to euclidean spaces of the same dimension. Moreover, proposition 1 establish
a locally well-defined map from My; to Mg through the idea of virtual feedback loops.
Therefore, by dimension counting this is an immersion map from Mg to My;. As the virtual
feedback defined by (14) is smooth and bounded in the sense that it uniformly tends to zero
when the state of the multisteering n-trailer tends to zero, then locally the immersion map
does not introduce any strange phenomenon and it is a nice topological isomorphism onto
its image and therefore an embedding. ]

The message here is the following: the application of feedback (14) to a multisteering
n-trailer restrict the system to a submanifold of its original manifold My;. This submanifold
is nothing but M, the manifold on which the general n-trailer is living. As usual, everything
that happens on a proper submanifold has ‘measure zero” on the original manifold, but what
is really important here is that it is compatible with the bigger structure.

It is important to remark that the virtual steering wheels introduced here are not dynamic
prolongations of the system. In fact the general n-trailer and the multisteering n-trailer
with the m feedback loops considered here live in the same manifold so they have the same
dimension. Indeed opening the feedback loops around the virtual steering wheels something
else is obtained, namely the true multisteering n-trailer.

9 Conversion into chained form

The chained form for driftless nonlinear control systems is important because it corresponds
to a particularly nice diffeomorphic representation of the original system with important
regularity properties.

It has been shown in [Tilbury et al. 1995] that a standard multisteering n 4+ m-trailer
system can be put into a multi-input chained form. The transformation consists, in prac-
tice, in considering each subsystem of trailers between two consecutive steering wheels as a
chain with the last trailer of the train as bottom of the chain. The solution proposed by
[Tilbury et al. 1995] holds for m + 1 generic exogenous steering inputs, so it will continue to
hold also under state feedback for the m new steering inputs.

Transforming a system into chained form means applying a static change of input and a
state diffeomorphism in order for the original system to appear ‘nicer’ i.e. to have some extra
properties that simplify dealing with problems like motion planning, trajectory tracking,
stabilization, etc. If the multisteering n-trailer can be converted into multiinput chained
form, what happens when we apply the virtual feedback (14)7 Such a feedback is a smooth
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map

w:D = R™
r = w(x)

If we apply a diffeomorphism to the state x:

v :D — D
r = z=1(x)

then the feedback can be rewritten in terms of the new basis using the chain rule as

w:D — R™ (41)
P = (@)

As o(+) is a diffeomorphism, all the properties of the virtual feedback are preserved, therefore
also the embedding property and the identification of Mg with a submanifold of My also in
the z coordinate chart. So it makes sense to convert the multisteering n-trailer into chained
form as in [Tilbury et al. 1995] and then apply the state feedback (14) transformed into the
new basis as in (41).

Unlike [Tilbury et al. 1995], the resulting system does not need any dynamic prolonga-
tion, the reason being that the bottom of each steering train is independent from the trailers
following behind.

As mentioned above, the transformation to chained form is greatly simplified when the
coordinates of the last trailer are considered, instead of the pulling car. In particular, the
velocity of the last trailer (rescaled by cos 8,,) results being the generator of the whole multi-
input chain. The system can be split into m 4 1 steering trains. Our aim is to transform
these m 4 1 subsystems into m + 1 2-input chained forms, all with the same generator, only
through differentiation. The generating input will be proportional to v,. It is convenient to

choose as generating input v 2 v, cos 8, because this give immediately =, = v so that we

can choose the state of the short chain as z, 2 x,. The corresponding bottoms of the chains
will be the other cartesian coordinate for the last chain and the 8,,,, 7 € {1,...,m}, i.e. the
orientation angles of the trailers off-hitched, for the first m chains. According to eq. (1), and
to eq. (38), the dynamic equation for the orientation angle immediately following the j-th
virtual wheel can be written as:

. UTL
;11 = 7 1 tan ; (42)
nj+1

v tan <(9nj — 0,41 + arctan <—]\L4nj tan(f,, -1 — an)>>

"3

Loyt Tz (1 25 tan 0,y — 00, ) tan(0, — 0,50)) TTIZ,, 41 co5(0 — b141)

k

v <tan (9% — 071]+1> — ]j\j—s tan(f,,_1 — Qn])>

Lnj-l-l HZL:]‘ <1 + ]1\34:: tan(enk—l - enk) tan(@nk - 0nk+1)> H?:n]-l—l COS(@[ - 01+1)
jefl, .. m}
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where 0,11 = 0 and the generating input v has been put into evidence. It is convenient to
define the input of the j-th virtual wheel as

wnj é énj—l—l (43)

so that the right side of eq. (42) will give the nonlinear state feedback that decides the
steering angle of the j-th passive steering wheel. Clearly, this feedback constitutes the link
between consecutive trains.

Using eq. (38), also the dynamic equation of all the orientation angles can be expressed
as a linear homogeneous function of the generating input v:

v tan(0,, i1 — 0n,—;)

O Loy Ty (14 32 tan (0,0 = 0,,) tan(0,, — 0,00) ) T, cos(6 — O151)
= Ufnj—z’ <Qn]—i—1>
Je{l,...om+1}, 1 €{0,1,...,n; —njp1 — 2}, Npp = n.
where

0. 200,011, ....0,]

With these notations the dynamic of the general n-trailer system becomes:

T, = v
U T (e (44)
énj_1+1 = Wj-1

Yn = Ufn-l-l (Qn)

Je{l,...om+1},i€{0,1,...,n; —nj41 — 2}, with the w; obtained via feedback from the
state as in eq. (42). The configuration space is then:

and we will consider the following domain for the change of coordinates:

D ={ qeRx(SHY' xR :|0,] < g [———

m
<§,

M,
0n, — 0n,+1 + arctan (—L—J tan(f,,_1 — an)>

j

s

< 5,
Je{l,...,m+1}, 1€{0,1,...,n; —njp1 — 2} }

Basically, Prop. 1 is sufficient to cast the general n-trailer problem into an m + 2 multi-

chained form with m + 1 chains corresponding to the m + 1 steering trains identified above,

all having the same generator. However, the solution proposed by [Tilbury et al. 1995],

due to the more generality of the problem (all exogenous inputs), requires to consider virtual
trailers to be attached in front of each of the existing steering trains in order to ‘decouple’ the
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dynamics of each train from the preceding ones, through a dynamic feedback from the state.
In our case this virtual extensions are not needed, because the dynamics of the steering trains
are already decoupled one from the other, i.e. each of the orientation angles ; depends only
on what happens in front of it, except for the passive steering wheels that create a connection
between two consecutive chains. Therefore, in the following, we will transform each of the
steering trains into a 2-input chained form, all with the same generator.

Theorem 2 There exists a local diffeomorphism that converts the system (44) into the multi-
chained form:

Z,=0 Z9 = U Zog41 = Up cer Ep a1l = Up (45)
21 = V% Zpi42 = UZni41 Zam+2 = UVZp,41
Zpny = UZp—1 Zny = UZpy-1 Zpn = VZp—
Zpnyl = VZp
where v and ug are exogenous inputs, while the m functions u;, 1 = 1,...m, are obtained via

(nonlinear) feedback from the state.

Proof.

We can apply the algorithm of [Sgrdalen 1993a] to each of the m + 1 steering chains. For
the last train, the chain will have an extra state (that will be called z,.1) with respect to
the other steering trains of the same length. The bottom of the chain is the second cartesian

coordinate of the last trailer N

Zp4+1 = Yn
Differentiating with respect to time, we get:

Un =vtan b, = vf,1(9,) = V2,

and, differentiating again,

tan(6,_; — 0, A
[/(n 6023 0, ) - ULinf”“ = V-1

Zy =V

where we define: N
L= fiv o Sl

and Lyh is the Lie derivative of h along the vector f.
For the first m steering trains we take as bottom of the corresponding chain the orientation
angle of the trailer with off-hitching (the last of each steering train):

Zn, éenj Je{,2,...,m}

Using the generator v, the chained form is obtained from the bottom variables defined above
using the relation

: . “nj—itl
an—i—l—l = Zgznj—i = an—i = s
Zg

Je{l,2,....om+1}; ce{,2,....n; —n;—y — 1}
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by means of a sequence of time differentiations. To have the same structure in all the m + 1
chains despite the extra variable present in the last chain, we need to apply a ‘cosmetic’
change of index, calling n,+1 = n + 1 (remember that, instead, we had defined before
Nm+1 = n). Now, for all the m + 1 chains we have:

an—l — fnj <Qn]_1>
ZnJ—Z = L fnj

=ny —1

an—i = Lf Lf

=ny —i+1 =ny —i+2 n,—1

f”]

Zn]_rl-l = Lf Lf Lf

—nj_1+2 —nj_1+3 —nj—2

Ly
L,

—1

with 7 € {1,2,....m+ 1} and ¢ € {1,2,...,n; —nj_y — 1}. The first variable of each chain
1S Zn, 141 = Zn,_ 141 Qn]—l‘l‘l) so, when we derive, also the input w;_; will appear into the

expression. Therefore we define the new input w;_; as:

A

Uil = 2 =L L ... L
J—1 nyj_1+1 in]_1+1 in]_1+2 inj—2

Ly [, (46)

where

inj_l-l-l = [wj—l fnj_1+2 o o W frmy2 --fn-l-l] JE {17---m + 1}

This marks the end of the chain and holds also for the first chain, the one depending on the
real steering input wg. So, for example, for the second-to-last (m-th) chain, we will have

Zn = O,
Zpm—1 = fnm
an_Q = Linm—lfnm

where

f 1 [fnm—l W fnm+2 - fn+1]

< N —

We know that, from the feedback law (43), the input is

W = W <Qnm—1>

and 1t bridges between the m + 1-th and m-th chains. On the other hand, w,, does not enter
into the definition of the immediately following state z,,, (the bottom of the next chain),
but only on the third one z,__5. So the ‘anomaly’ introduced by the feedback in w,, does
not spoil the triangular structure of the change of base, since 8, _; is already present also
in f, ,i.e. in the second state of the new chain. This holds for all chains and we can write:

TR (e
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forje{l,...m+1}and i€ {0,1,...n; —nj_y — 1}.

If we call z = (24 20 21 - . .Zn_|_1]T the new state vector in the chained form, then the
transformation above calculated,

z=V(q) (47)

is a diffeomorphism in D. In fact, it is easily proven that the Jacobian % is nonsingular in
D, since it is upper diagonal with nonnull diagonal elements in D. The upper diagonal form
of the Jacobian is a consequence of the aforementioned argument that each of the z; depends
only on the orientation angles of the trailers up to the i-th one, not to what happens in front
of it:

zi=z(0;,) 1€40,1,...n}
which implies that

aZi
=0 ifk
90, 0 ik >0
All the elements of the diagonal:
0z, 0zy 0z Ozny, Oznjy1 O0znga

D2, 90y 90 90, Dyan Oy

are certainly nonzero. In particular, for the last state z,, j € {1,...m + 1} of each chain and
for the generator z,, the corresponding diagonal element will be 1, while for the remaining
states z,,_; j € {l,...m+1} 1 €{l,...n; —n;_y — 1} it will be proportional to the term

v '1—9 oy that corresponds to the derivative of a tangent function. This assures the
T, —1 n] —t

nonsiﬁgularity of the Jacobian matrix in the domain D.

Also the m + 2 input transformation can be easily shown to be well-defined in D. We
saw in eq. (39) that the generating input v (for My = 0) can be obtained from vg. With
regard to the virtual and real steering inputs, eq. (46) says that the corresponding input in

the chained form w;, j € {1,...m}, is a function of the original inputs up to the j-th:

U; = Uy <w]7wj+17 <. 7wmvgn]—1> :

Therefore also the input transformation is a local diffeomorphism.
According to eq. (43), the input u;_; can be thought of as state feedback from the existing

state:
uj—l = g <wj—17Qn]_1+1> = g <an_1>

where now w; and 6; can be considered as obtained from the inverse diffeomorphism of the
above described state and input transformations in a domain containing the origin. ]

Unlike the standard n-trailer case, this transformation is not very much useful in practice:
in fact, trying to squeeze down to ‘euclidean’ the system along the regular parts of the chains
results into an ‘explosion’ of the expression of the nonlinear feedback for the virtual wheels
which becomes dependent on partial derivatives of the whole state. Attaining an explicit
expression for the feedback in the new basis is quite prohibitive also for low-dimensional
cases, because it requires to have an explicit expression for the inverse of the diffeomorphism

(47).
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The chained form is known to be the dual canonical form of the so-called Goursat normal
form for higher order contact manifolds, see [Bryant et al. 1991]. The fact that kingpin
hitches spoils the transformation can be seen also from the derivative flag (40). The double
loss of rank of the derived codistribution in correspondence to each off-axle hooking implies
that the basis used in the Goursat normal form theorem is not adapted to the derivative
flag of I because one has to look for m integrable functions orthogonal to I (other that the
usual 7 # 0 mod I) one for each kingpin hitch. In the same spirit as [Tilbury et al. 1995],
it is possible to add virtual one-forms, corresponding to the virtual steering wheels, i.e. first
order prolongations to the system. The constraint w’ on the j-th virtual steering wheel has
the expression:

w! = sin 0., dx;, —cosf., dy, =0

where (x,;, 1,,) are the cartesian coordinates of the kingpin hitch point and 6., is the ori-
entation angle of the virtual wheel. The corresponding dynamic equations can be easily
calculated from the geometry (see Fig. 2) and from the expression for the virtual feedback
calculated in this Section. It can be seen that, although the virtual constraints ‘regularize’
the derivative flag of the original system, the augmented system is still not regular. Adding
sufficient many dynamic prolongations (which have the meaning of other virtual trailers
added in front of the virtual steering wheels, see [Tilbury et al. 1995]), it is probably possi-
ble to achieve a derivative flag with towers that decrease regularly (see [Bushnell et al. 1993]
for details). However, the bottom line is that the new virtual steering angle, which is now
the derivative of some order of the virtual steering angle «;, is still going to have an expres-
sion which is a function of the original state. In this augmented basis, (not yet transformed
into chained form) prolonging the virtual inputs means ‘prolonging the feedback law’ i.e.
adding terms to the virtual feedback (43) such that its new expression is a function of all
the orientation angle of the real system standing in front of the corresponding kingpin hitch
from which the prolongation originates (and not a simple one....).

10 Conclusion

The kinematic analysis of the so-called n-trailer system is usually limited to the special case
of axle-to-axle hitching between trailers. This is done not only for sake of simplicity, but also
because such a model presents a number of interesting properties which are (relatively) easy
to verify, like nonlinear controllability, conversion into chained form or differential flatness, all
due to the nonholonomic nature of the system. For the more general configuration considered
in this paper, which includes also more realistic off-axle connections between trailers, it is
shown how to verify or interpret some of these properties normally used in the standard
configuration.
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